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§ Human error, attacks, and extreme weather events can result in blackouts → power systems 
must be resilient

§ OPSR lies at the heart of evaluation and improvement of power system resiliency:
— Interruption time, interrupted load
— Cranking paths, energization priorities, black-start allocation

§ OPSR corresponds to a large-scale mixed-integer nonlinear program
— Large-scale due to size of realistic networks (thousands of buses)
— Nonlinear due to power flow equations
— Mixed-integer due to binary energization decisions

§ Simultaneous attack or damage to communication systems may affect optimal restoration 
decisions

Optimal Power System Restoration (OPSR)
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OPSR without Communications Considerations

§ Objective: Restore normal system operation as fast as possible
§ Decision variables:

— Startup sequence of generators
— Energization of buses, lines, transformers and other components
— Pickup of loads

§ Restrictions/Constraints:
— Energization consistency (integer, linear)
— Sequential energization, maximum number of energizations per step
— Optimal power flow constraints

• AC power flow equations (continuous, nonlinear)
• Thermal and voltage limits

§ Challenges:
— Problem size: 1500-bus grid problem leads to ~1M decision variables
— Problem complexity: mixed integer linear optimization problem (piecewise linear AC approximation)

I. Aravena, D. Rajan, G. Patsakis, “Mixed-integer linear approximations of AC power flow equations for systems under abnormal operating 
conditions,” IEEE PES General Meeting, 2018 .
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§ Specialized integer L-shaped method for power system restoration exploiting time and spatial 
decomposition

§ Add the following novel cuts:
— Energization cuts: cuts and strengthening inequalities for islands without online generators
— Hybrid Benders-binary island-based cuts: remove islands with no power flow solution to linear 

relaxation
— Binary island-based cuts: remove islands for which linear power flow is feasible but MIP power flow 

is not

§ Heuristics to:
— Greedily generate an initial solution
— Round relaxed energization solutions to consistent plans
— Generate improved energization plans out of known feasible configurations

Previous Algorithmic Developments

G. Patsakis, D. Rajan, I. Aravena, S. Oren, “Strong Mixed-Integer Formulations for Power System Islanding and Restoration,” IEEE Trans. Power 
Systems, 2019.
I. Aravena, D. Rajan, G. Patsakis, S. Oren, J. Rios, “A scalable mixed-integer decomposition approach for optimal power system restoration,” 
Optimization Online, 2019.
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Specialized integer L-shaped for OPSR
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§ Implementation using Julia/JuMP/LightGraphs, Ipopt, Gurobi

§ Solving restoration using
— DC power flow
— LP AC linear approximation
— MILP AC linear approximation

§ Each experiment running on a single node of Quartz with a time limit of 48 
hours or 1% optimality

§ Multi-threaded (24 threads) evaluation of island feasibility with static balancing 
based on island size

Numerical performance: settings
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System buses branches gens
Power Value Gap Solution Time composition [%]

flow [-] [%] time [s] B&B Cuts Heur.

DC 26.41 0.01 13.0 14.6 0.8 84.6

IEEE39 39 46 10 LRAC 26.41 0.01 17.5 10.3 1.1 88.6

MIAC 26.41 0.01 22.2 8.1 1.8 90.1

DC 18.73 0.03 22.6 13.3 2.7 84.1

IEEE118 118 186 54 LRAC 18.73 0.03 49.6 5.8 2.6 91.5

MIAC 18.58 0.84 19 901.1 0.1 99.0 0.9

DC 32.52 0.77 33 123.7 90.2 4.6 5.2

Chile 1 548 1 954 297 LRAC 30.65 *6.88 84 044.5 69.7 23.9 6.4

MIAC 30.64 *7.26 172 188.3 5.4 14.3 80.2

Numerical performance: black start instances

§ Performance highly dependent on power flow model used: convex models (DC, LRAC) much 
easier than non-convex (MIAC) due to over-voltages in early stages of black start

§ Algorithm works! (without algorithm: problem cannot be even loaded in memory for large 
instances, large constants in MILP make relaxations very lose)
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§ Extreme events and cyber-attacks may damage or compromise communications systems used 
to monitor and control power systems 

§ Equipment cannot be energized if a control signal cannot be sent to the substation where the 
bus is located

§ Restoration with compromised communications workflow:

Asses damage → Repair/replace → Energize

§ Problem: limited trained human resources to repair/replace damaged/compromised equipment

§ Questions:
— How are energization decisions affected if the control network is damaged along with the power 

system?
— What is the optimal restoration sequence for damaged communication systems?

Control System Restoration
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Communications Network Structure – IEEE 39-Bus Example
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1. A communication channel is operational if and only if the communications 
equipment at both terminals (substations or control centers) of the channel is 
functioning

2. If the communications equipment at a substation is not functioning, the substation 
will be de-energized for operational security

3. Control centers are always energized, though the communications equipment at 
control centers may be damaged or compromised

Other Communications Model Assumptions
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§ Overlay communications model on power system model developed in [1]

§ Only consider energization decisions in conjunction with communication equipment 
repairs to start with

§ Objective unchanged

§ Added decision variables:
— 𝑤#,%: indicator of the operational status of communications equipment at substation, control center, 

or communications channel 𝑎 at time 𝑡
— 𝑤#,%

'(): binary variable that's 1 if repair begins on communications equipment at substation or 
control center 𝑎 at time 𝑡, 0 otherwise 

Communications in Power System Model

[1] I. Aravena, D. Rajan, G. Patsakis, S. Oren, J. Rios, “A scalable mixed-integer decomposition approach for optimal 
power system restoration,” Optimization Online, 2019. 
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§ Communications equipment that is operational at the start of the 
time horizon will remain operational,

𝑤#,% = 1 ∀ 𝑎 ∈ 𝐶/ ∪ 𝑆/, 𝑡 ∈ 𝑇

§ All other communications equipment will become operational   
𝜏# periods after repairs begin,

𝑤#,% − 𝑤#,%56 = 𝑤#,%578
9:; ∀ 𝑎 ∈ {𝐶\𝐶/} ∪ {𝑆\𝑆/}, 𝑡 ∈ {𝑇 + 𝜏#,… , 𝑇}

§ The operational status of damaged systems must be 0 until 
enough time has passed for repairs to be made,

𝑤#,% = 0 ∀ 𝑎 ∈ {𝐶\𝐶/} ∪ {𝑆\𝑆/}, 𝑡 ∈ {𝑇,… , 𝑇 + 𝜏# − 1}

Communications System Constraints
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§ The amount of equipment simultaneously undergoing repair is 
limited by the amount of workers available,

D
#∈ E\FG ∪{H\IG}

D
%JKLMN{O,%578P6}

%

𝑤#,%J
9:; ≤ 𝐾STLL ∀ 𝑡 ∈ 𝑇

§ Communications lines are only operational if the communications 
equipment at both terminals is operational,

𝑤U,% ≤ 𝑤#,% ∀ 𝑙 ∈ 𝐿STLL, 𝑎 ∈ 𝐼 𝑙 , 𝑡 ∈ 𝑇

𝑤U,% ≥ D
#∈Z U

𝑤#,% − 1 ∀ 𝑙 ∈ 𝐿STLL, 𝑡 ∈ 𝑇

Communications System Constraints (cont.)
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§ A bus can only be energized if there is an operational 
communications path from the control center to its substation,

𝑢\,% ≤ 𝑤],%∀ 𝑐 ∈ 𝐶, 𝑠(𝑛) ∈ 𝑆(𝑐)

𝑢\,% ≤ D
U∈cdeff g h

𝑤U,% ∀ 𝑐 ∈ 𝐶,𝑀 ⊆ 𝑆 𝑐 : 𝑠(𝑛) ∈ 𝑀, 𝑡 ∈ 𝑇

— Exponentially many inequalities, but separable as min-cut/max-flow

§ For a bus to be energized, the communications equipment at its 
substation must be operational,

𝑢\,% ≤ 𝑤l \ ,%∀ 𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇

Communications System Constraints (cont.)
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§ Incumbent separation (at integer candidates) much faster (linear time) than general 
separation (quadratic time)

§ For each time 𝑡:

1. Construct graph with available communications channels (𝑤𝑙,𝑡 = 1)

2. Split graph into connected components

3. Find connected components without control centers

4. Find energized buses (𝑢𝑛,𝑡 = 1) within connected components without control 
centers → violated communication constraints

Exponential constraints separation
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§ Minimal power flow representation: existence of at least one generator providing 
voltage to each electrical island (relaxation of DC and AC power flows)

§ Running experiments on IEEE39 and IEEE118 tests systems with communications 
networks generated following procedure of [2]

§ Performance observations:
— All experiments finished in less than 15 seconds
— At most 40 constraints from the exponential class generated on the fly
— Further study with power flow constraints and larger instances in progress

Numerical experiments

[2] M. Korkali et al., “Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence,” 
Nature Scientific Reports 7, 2017.
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IEEE039: Energizations decisions for different levels of damage in 
communications network
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(similar, but less pronounced effects, observed for IEEE118)
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§ Specialized integer L-shaped method in conjunction with initialization heuristics allows us to 
solve
— Instances up to 10x the size of the state-of-the-art when using an LP approximation of the power 

flow equations
— Instances of the size of the state-of-the-art using an MILP approximation (taking over-voltages into 

consideration)

§ Adding control network to the model allows us to analyze the impact of a cyber-attack or 
damaged communication systems on restoration planning

§ Damaged/weak communications network can significantly delay restoration of power to critical 
services and end costumers

§ Perform grid energization actions (starting up generators, switching lines) in parallel to repairs 
to the communication network results critical in attaining good restoration performance

Conclusions
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§ Assume you want to solve

min
q∈ /,6 r 𝑓(𝑥)

𝑠. 𝑡. 𝐴𝑥 ≥ 𝑏
𝑔 𝑥 ≥ 0

where 𝑔(𝑥) is a complicated 
function.

§ Note: for a given y𝑥, if 𝑔 y𝑥 ≤ 0 we 
can separate y𝑥 by the following cut

D
z:{q|K/

𝑥z + D
z: {q|K6

(1 − 𝑥z) ≥ 1

Generic integer L-shaped method

Integer L-shaped method

1. Let 𝐶 = [], 𝑑 = []

2. Solve
min

q∈ /,6 r 𝑓(𝑥)

𝑠. 𝑡. 𝐴𝑥 ≥ 𝑏, 𝐶𝑥 ≥ 𝑑

3. Evaluate 𝑔(𝑥∗)

4. If 𝑔 𝑥∗ ≥ 0, then 𝒙∗ is 
optimal for the original 
problem.
Else, append cut 
parameters to 𝐶, 𝑑 and 
return to 2.
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OPSR: Structure of the constraint matrix

𝑡 = 1

𝑡 = 2

𝑡 = 3

⋮

on/off power
flow
𝑡 = 2

power
flow
𝑡 = 3

power
flow
𝑡 = 1

⋯

energization
consistency

RHS

𝐴𝑥 ≥ 𝑏

𝑔6 𝑥 ≥ 0

𝑔� 𝑥 ≥ 0

𝑔� 𝑥 ≥ 0

⋮
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§ For any time 𝑡, a {0,1} energization status for all components allows to 
decompose the system in islands

§ Power flow feasibility can be determined at the island level → large 
potential for parallelism in large scale systems

§ An energization plan y𝑥 (respecting consistency) is feasible iff all of its 
islands are feasible

OPSR: Further structure for given energization decisions
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§ Power flow approximation is LP feasible, but MILP infeasible: integer L-shaped cut for island 
𝓘 at time 𝒕

D
U:U∈c ℐ , {q�K/

𝑥U,% + D
U:U∈c ℐ , {q�K6

(1 − 𝑥U,%) + D
U:U∈c �ℐ

𝑥U,% + ⋯ ≥ 1

§ Power flow approximation is LP infeasible: hybrid Benders-integer cut for island 𝓘at time 𝒕

𝑣ℐ + D
�∈�(ℐ)

𝑤ℐ,�𝑥�,% ≤ 𝑀 ⋅ D
U:U∈c ℐ , {q�K/

𝑥U,% + D
U:U∈c ℐ , {q�K6

(1 − 𝑥U,%) + D
U:U∈c �ℐ

𝑥U,%

where 𝑣, 𝑤 describe an unbounded ray of the dual of the LP relaxation

§ Islands tend to reappear at different times → MAINTAIN hash table with all evaluated 
islands

Infeasibility cuts



24
LLNL-PRES-778418

§ Bare branch-and-bound will terminate, however, practical performance also relies on 
heuristics

§ An initial solution provides with a starting point for solver heuristics (e.g. local search) and 
helps in fathom B&B nodes. We create an initial restoration plan by executing the following 
steps for each 𝑡

1. Clone 𝑡 − 1 solution

2. Update online generator status (cranking → on, if possible)

3. Greedily energize branches in border of each island (decreasing capacity), up to 
energization budget

4. Greedily startup more generators

Creating an initial solution through a greedy heuristic
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§ At certain nodes of the B&B tree, we can round the node solution to a consistent or, even, 
feasible restoration plan

§ Generating a consistent restoration plan (respecting 𝐴𝑥 ≥ 𝑏, 𝐶𝑥 ≥ 𝑑):

For each time 𝑡, obtain consistent energization decisions by minimizing L1 rounding error subject to 
𝑨𝒙 ≥ 𝒃 , 𝑪𝒙 ≥ 𝒅 (existing cuts) and 𝒙 ∈ 𝟎, 𝟏 𝒏

§ Generating a feasible restoration plan:

For each time 𝑡, construct a configuration using feasible islands from the hash table, such that it 
respects sequential energization and the maximum number of energizations

Rolling-horizon heuristics for rounding at B&B nodes


